2,032 research outputs found

    Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description

    Full text link
    The gravitational-wave signal from inspiralling neutron-star--neutron-star (or black-hole--neutron-star) binaries will be influenced by tidal coupling in the system. An important science goal in the gravitational-wave detection of these systems is to obtain information about the equation of state of neutron star matter via the measurement of the tidal polarizability parameters of neutron stars. To extract this piece of information will require to have accurate analytical descriptions of both the motion and the radiation of tidally interacting binaries. We improve the analytical description of the late inspiral dynamics by computing the next-to-next-to-leading order relativistic correction to the tidal interaction energy. Our calculation is based on an effective-action approach to tidal interactions, and on its transcription within the effective-one-body formalism. We find that second-order relativistic effects (quadratic in the relativistic gravitational potential u=G(m1+m2)/(c2r)u=G(m_1 +m_2)/(c^2 r)) significantly increase the effective tidal polarizability of neutron stars by a distance-dependent amplification factor of the form 1+α1 u+α2 u2+...1 + \alpha_1 \, u + \alpha_2 \, u^2 +... where, say for an equal-mass binary, α1=5/4=1.25\alpha_1=5/4=1.25 (as previously known) and α2=85/14≃6.07143\alpha_2=85/14\simeq6.07143 (as determined here for the first time). We argue that higher-order relativistic effects will lead to further amplification, and we suggest a Pad\'e-type way of resumming them. We recommend to test our results by comparing resolution-extrapolated numerical simulations of inspiralling-binary neutron stars to their effective one body description.Comment: 29 pages, Physical Review D, to appea

    Orbital Tests of Relativistic Gravity using Artificial Satellites

    Full text link
    We reexamine non-Einsteinian effects observable in the orbital motion of low-orbit artificial Earth satellites. The motivations for doing so are twofold: (i) recent theoretical studies suggest that the correct theory of gravity might contain a scalar contribution which has been reduced to a small value by the effect of the cosmological expansion; (ii) presently developed space technologies should soon give access to a new generation of satellites endowed with drag-free systems and tracked in three dimensions at the centimeter level. Our analysis suggests that such data could measure two independent combinations of the Eddington parameters (beta - 1) and (gamma - 1) at the 10^-4 level and probe the time variability of Newton's "constant" at the d(ln G)/dt ~ 10^-13 yr^-1 level. These tests would provide well-needed complements to the results of the Lunar Laser Ranging experiment, and of the presently planned experiments aiming at measuring (gamma -1). In view of the strong demands they make on the level of non- gravitational perturbations, these tests might require a dedicated mission consisting of an optimized passive drag-free satellite.Comment: 17 pages, IHES/P/94/22 and CPT-94/P.E.302

    Conservation laws for systems of extended bodies in the first post-Newtonian approximation.

    Full text link
    The general form of the global conservation laws for NN-body systems in the first post-Newtonian approximation of general relativity is considered. Our approach applies to the motion of an isolated system of NN arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies and uses a framework recently introduced by Damour, Soffel and Xu (DSX). We succeed in showing that seven of the first integrals of the system (total mass-energy, total dipole mass moment and total linear momentum) can be broken up into a sum of contributions which can be entirely expressed in terms of the basic quantities entering the DSX framework: namely, the relativistic individual multipole moments of the bodies, the relativistic tidal moments experienced by each body, and the positions and orientations with respect to the global coordinate system of the local reference frames attached to each body. On the other hand, the total angular momentum of the system does not seem to be expressible in such a form due to the unavoidable presence of irreducible nonlinear gravitational effects.Comment: 18 pages, Revte

    Primordial black hole evolution in tensor-scalar cosmology

    Get PDF
    A perturbative analysis shows that black holes do not remember the value of the scalar field Ï•\phi at the time they formed if Ï•\phi changes in tensor-scalar cosmology. Moreover, even when the black hole mass in the Einstein frame is approximately unaffected by the changing of Ï•\phi, in the Jordan-Fierz frame the mass increases. This mass increase requires a reanalysis of the evaporation of primordial black holes in tensor-scalar cosmology. It also implies that there could have been a significant magnification of the (Jordan-Fierz frame) mass of primordial black holes.Comment: 4 pages, revte

    Testing gravity to second post-Newtonian order: a field-theory approach

    Full text link
    A new, field-theory-based framework for discussing and interpreting tests of gravity, notably at the second post-Newtonian (2PN) level, is introduced. Contrary to previous frameworks which attempted at parametrizing any conceivable deviation from general relativity, we focus on the best motivated class of models, in which gravity is mediated by a tensor field together with one or several scalar fields. The 2PN approximation of these "tensor-multi-scalar" theories is obtained thanks to a diagrammatic expansion which allows us to compute the Lagrangian describing the motion of N bodies. In contrast with previous studies which had to introduce many phenomenological parameters, we find that the 2PN deviations from general relativity can be fully described by only two new 2PN parameters, epsilon and zeta, beyond the usual (Eddington) 1PN parameters beta and gamma. It follows from the basic tenets of field theory, notably the absence of negative-energy excitations, that (beta-1), epsilon and zeta (as well as any new parameter entering higher post-Newtonian orders) must tend to zero with (gamma-1). It is also found that epsilon and zeta do not enter the 2PN equations of motion of light. Therefore, light-deflection or time-delay experiments cannot probe any theoretically motivated 2PN deviation from general relativity, but they can give a clean access to (gamma-1), which is of greatest significance as it measures the basic coupling strength of matter to the scalar fields. Because of the importance of self-gravity effects in neutron stars, binary-pulsar experiments are found to constitute a unique testing ground for the 2PN structure of gravity. A simplified analysis of four binary pulsars already leads to significant constraints: |epsilon| < 7x10^-2, |zeta| < 6x10^-3.Comment: 63 pages, 11 figures.ps.tar.gz.uu, REVTeX 3.

    Phasing of gravitational waves from inspiralling eccentric binaries at the third-and-a-half post-Newtonian order

    Full text link
    We obtain an efficient description for the dynamics of nonspinning compact binaries moving in inspiralling eccentric orbits to implement the phasing of gravitational waves from such binaries at the 3.5 post-Newtonian (PN) order. Our computation heavily depends on the phasing formalism, presented in [T. Damour, A. Gopakumar, and B. R. Iyer, Phys. Rev. D \textbf{70}, 064028 (2004)], and the 3PN accurate generalized quasi-Keplerian parametric solution to the conservative dynamics of nonspinning compact binaries moving in eccentric orbits, available in [R.-M. Memmesheimer, A. Gopakumar, and G. Sch\"afer, Phys. Rev. D \textbf{70}, 104011 (2004)]. The gravitational-wave (GW) polarizations h+h_{+} and h×h_{\times} with 3.5PN accurate phasing should be useful for the earth-based GW interferometers, current and advanced, if they plan to search for gravitational waves from inspiralling eccentric binaries. Our results will be required to do \emph{astrophysics} with the proposed space-based GW interferometers like LISA, BBO, and DECIGO.Comment: 22 pages including 2 figures; submitted to PR

    Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates

    Full text link
    Dimensional regularization is used to derive the equations of motion of two point masses in harmonic coordinates. At the third post-Newtonian (3PN) approximation, it is found that the dimensionally regularized equations of motion contain a pole part [proportional to 1/(d-3)] which diverges as the space dimension d tends to 3. It is proven that the pole part can be renormalized away by introducing suitable shifts of the two world-lines representing the point masses, and that the same shifts renormalize away the pole part of the "bulk" metric tensor g_munu(x). The ensuing, finite renormalized equations of motion are then found to belong to the general parametric equations of motion derived by an extended Hadamard regularization method, and to uniquely determine the heretofore unknown 3PN parameter lambda to be: lambda = - 1987/3080. This value is fully consistent with the recent determination of the equivalent 3PN static ambiguity parameter, omega_s = 0, by a dimensional-regularization derivation of the Hamiltonian in Arnowitt-Deser-Misner coordinates. Our work provides a new, powerful check of the consistency of the dimensional regularization method within the context of the classical gravitational interaction of point particles.Comment: 82 pages, LaTeX 2e, REVTeX 4, 8 PostScript figures, minor changes to reflect Phys. Rev. D versio

    Parametric derivation of the observable relativistic periastron advance for binary pulsars

    Full text link
    We compute the dimensionless relativistic periastron advance parameter kk, which is measurable from the timing of relativistic binary pulsars. We employ for the computation the recently derived Keplerian-type parametric solution to the post-Newtonian (PN) accurate conservative dynamics of spinning compact binaries moving in eccentric orbits. The parametric solution and hence the parameter kk are applicable for the cases of \emph{simple precession}, namely, case (i), the binary consists of equal mass compact objects, having two arbitrary spins, and case (ii), the binary consists of compact objects of arbitrary mass, where only one of them is spinning with an arbitrary spin. Our expression, for the cases considered, is in agreement with a more general formula for the 2PN accurate kk, relevant for the relativistic double pulsar PSR J0737--3039, derived by Damour and Sch\"afer many years ago, using a different procedure.Comment: 12 pages including 1 figure; submitted to PR
    • …
    corecore